
For gooGle

anAlytiCs

by Robbin
Steif

rEgular

expressIonS

http://www.lunametrics.com/blog/

a story about Regular People
and Regular Expressions . . .

When I first starting working with Google
Analytics, I was an analyst. A marketing
person. Not a techie.

Back then, the Google Analytics
documentation kept referencing something
called Regular Expressions. I could see that
my goals and filters weren’t doing what
they needed to do, but, not being a techie, I
didn’t know how to implement RegEx and
fix them.

(In fact, I knew so little about this space
that when a friend referred to Regular
Expressions as “RegEx,” I wondered what
he was talking about.)

Slowly I taught them to myself, with the
help of Wikipedia and a friend in Australia.
Then I began to blog about them, using
non-techie language. I got a letter from
a trainer on the other side of the pond
who told me that when he trained people
in Regular Expressions, he turned them
loose on the LunaMetrics blog. Eventually,
Google invited my company to become
a Google Analytics Certified Partner.
Our company helped rewrite the Google
Analytics Help Center section on Regular
Expressions. And to this day, I get random
emails from random people, asking me to
troubleshoot their RegEx.

jUst

2

Google Analytics is one of the

most widely used tools to measure and

evaluate websites. The GA team has

worked hard to make it easier and more

intuitive than ever before. However,

you may still feel that you are limited

by the Google Analytics out-of-the box

functionality.

If so, it’s time for you to learn

about Regular Expressions and how GA

uses them.

A word about language.
What would a how-to guide be without some
dictionary-type advice? Here are some of the
conventions we may use:

GA: The abbreviation for Google Analytics

RegEx: the abbreviation for Regular
Expressions (singular and plural)

Plain text: Not Regular Expression Text

String: any assembly of characters and/or
spaces. A word could be a string, a sentence
could be a string, a URL could be a string.

Target String: the string you are attempting
to match with your RegEx.

Example: when I use robb?(y|i)n to match
my name, Robbin (the one with all the
funny characters), robb?(y|i)n is the
Regex, and my name, Robbin, is a target
string.

A word about format.
I just hate when I read a post or book and
they write that the keyword is “sodapop.”
Or “vanilla.” Or anything that has quotation
marks around it. Because you never know if
the quotation marks are part of the stuff you
are working on, or are just used to separate
that word from the rest of the sentence.
Consequently, I put all target strings and
all RegEx in boldface – no quotation marks
needed.

In Google Analytics, you can use
Regular Expressions to ...

create filters. Many filters require Regular Expressions. If
you don’t know what filters are, you can start learning about them here.

create one goal that matches multiple goal pages.
Perhaps your “thank you” page has many names, but to you, all leads are the same
goal. So you can use Regular Expressions to “roll them up.”

fine-tune your funnel steps so that you can get exactly what you
need. Remember, Regular Expressions can be specific.

What are Regular Expressions, anyway? Regular Expressions are about
“power matching.” If you need to create a goal that matches multiple thank-you
pages – that is power matching. If you need to write a filter that matches multiple
URLs, but only know what a piece of each URL looks like – again, that is power
matching.

wHy use reg Ex?

But what about Advanced Segments?
Can’t I skip this whole RegEx thing now that
Google Analytics has Advanced Segments?

Well, no. Advanced Segments are lovely, and they often make filters
unnecessary. But they don’t work the same way as filters do. And you

will still need Regular Expressions to create interesting and complicated
goals, and to accommodate your website designer who doesn’t do things

the Google Analytics-friendly way. And sometimes, you will want to
use Regular Expressions in your Advanced Segments. 3

http://www.lunametrics.com/blog/2007/04/

IndEx

4

 Regular Expressions page 5

 Let’s Practice page 21

 Learn About RegEx page 6

 NOT The End page 22

 The Backslash page 7

 The Question Mark page 9

 Square Brackets & Dashes page 12

 The Dot page 15

 The Star page 17

 The Caret page 19

 The Pipe page 8

 Parentheses page 10

 Braces page 14

 The Plus Sign page 16

 The Dot Star page 18

 The Dollar Sign page 20

\

?

[-]

.

*

^

|

()

{}

+

.*

$

Regular Expressions match as much as possible.

answErs

Most of this ebook will be about all the characters that make up
the Regular Expressions “toolset.” But first – you’ll be lost if you
don’t understand the concept of matching as much as possible.
Sometimes you will be very surprised at how much it matches, just
as I was when I was new at RegEx.

Let’s start with an example: Our company often wants to see all
the keywords that include our company name (branded search)
and, more often, we want to see all the keywords that don’t include
our company name (unbranded search). Below are two of the
Regular Expressions we use when we are including or excluding
our company name:

Luna
Metric

There are two interesting questions here, and you might feel some
righteous indignation as you ask them. I know that I felt this way
when I was first learning RegEx:

1. Why would they match? Not a single one of those phrases
includes the entire name.

2. How can those possibly be Regular Expressions? There are no
RegEx characters!

1. They match because Regular Expressions in GA will match and
match until they aren’t allowed to any more. That’s why Metric
matches the target string, LunaMetrics – if it matches any part
of the word, it will match the whole word.

2. And the characters? You don’t need to have those characters
just to have a Regular Expression, and having the characters
doesn’t necessarily make it a RegEx. All you need to do is put the
expression into a field that is sensitive to RegEx. For example,
when you write a Google Analytics goal, you get to choose “head
match,” “exact match” or “Regular Expression.” As soon as you
choose “Regular Expression,” the field becomes sensitive to
RegEx, and all the rules of RegEx apply. You often need to use
little RegEx characters – but not always.

5

A friend wrote a question on a forum. He wanted
to exclude all traffic that was coming from Google referring

links, all around the world. He tried to create a really
fancy RegEx that would include all countries, something like

www\.google\.(com|co\.(au|uk|il))/(docs|analytics|reader) etc.

I wrote back: “Why don’t you just use
the word google as your RegEx?”

of course, reading this eBook will help you, but you can only
get so far by reading. Ultimately, understanding and writing Regular Expressions
(RegEx) is a little bit like getting your first job. You can’t get hired without
experience, and you can’t get experience without getting hired.

With RegEx, you don’t really understand them until you use them, and you can’t
really use them until you understand them. So you have to learn a little bit, and then
use a little bit and get them wrong, and then go back to the book and learn a little bit
more.

The other problem you will have with RegEx is that each character is easy. Put them
all together and you get this:

/\?cid=[0-9]{3,3}.

And that one wasn’t very hard. The more you work with them, the easier they’ll get.
So master each step, put a couple together, make some mistakes and get going.

Soon you’ll be a RegEx pro.

How do I lEarn

 aboUt reg Ex?
There are a lot of great resources
to check your Regular Expressions. If you use the
PC, I strongly recommend the RegEx Coach:

http://www.weitz.de/regex-coach/

Unfortunately, it is unavailable for Mac, so an
alternative would be the RegEx Match Maker:

http://sourceforge.net/projects/
quregexmm/

There are many others.

6

http://www.weitz.de/regex-coach/
http://sourceforge.net/projects/quregexmm/
http://sourceforge.net/projects/quregexmm/

I always encourage people to start their
“RegEx career” by learning the characters, and the best one
to start with is the backslash. A backslash is different from
all the other characters, as you will see. It provides a bridge
between Regular Expressions and plain text.

A backslash “escapes” a character. What does “escape”
mean? It means that it turns a Regular Expression character
into plain text. If that doesn’t make sense to you yet, hold on
– I have a few examples coming.

Perhaps /folder?pid=123 is your goal page. The problem
we have is that the question mark already has another use in
Regular Expressions – but we need for it to be an ordinary
question mark. (We need it to be plain text.)

We can do it like this:

/folder\?pid=123
Notice how there is a backslash in front of the question
mark – it turns it into a plain question mark.

Example Alert: Now, when we are creating a Google
Analytics search and replace filter for the page above, we
can use that backslash and know that GA understands we
are looking to match to a real question mark, like so:

The bAckslAsh
 get started

Why are backslashes
about getting started?

1. You will use them more than any other RegEx character.
2. They turn special RegEx characters

into everyday, plain characters.

7

\

http://www.google.com/support/analytics/bin/answer.py?hl=en&answer=55573
http://www.google.com/support/analytics/bin/answer.py?hl=en&answer=55573

The pipe is the simplest of Regular Expressions, and it is
the one that all Regular People (that’s you and me) should
learn. It means or .

Here’s a simple example: Coke|Pepsi . A soft-drink
blog might use that expression with their Google Analytics
keyword report to find all examples of searches that came
to their blog using either the keyword Coke or the keyword
Pepsi.

Here’s another example: Let’s say you have two thank-
you pages, and you need to roll them up into one goal.
The first one is named thanks, and the second is named
confirmation. You could create your goal like this:

confirmation|thanks
That says, match either of those pages. Notice that the pipe
matches everything on either side of it.

Here you can see a screen shot of a Google Analytics goal setup
that includes the two pages suggested above, with a pipe:

The pIpe

 not-very-wild cards

And where is the Pipe,
anyway? Keyboards
differ, but you’ll most

likely find it above your
Enter key.

8

|

A question mark means, “The last item (which, for
now, we’ll assume is the last character) is optional.” So
remember how I wrote that people misspelled my name,
often spelling it with one b instead of two? With a RegEx of
Robb?in, I can capture both Robbin and Robin. That’s
because the question mark means that the expression will
match even if the second “b” isn’t in the target string –
because it is optional.

In case you’re wondering – I often use this RegEx to filter
keywords on my company’s website, so that I can quickly
pull out keywords that were clearly looking for me instead of
our services.

That way, I capture both the people who spell my name
correctly and those who misspell. In fact, when I do a report
that excludes branded keywords, I usually try to exclude
both our company name and my name. Like this:

The quEStion MarK

 not-very-wild cards

9

?

Parentheses in Regular Expressions work the same way that they
do in mathematics. This falls into the category of “Things I should
have learned had I been paying attention in grade school.”

Now, before I get into this long explanation, I want to provide an
example. This is because I user-tested this whole ebook, and the
testers complained, “Robbin, sometimes we just need to see the
example up front.” So here is an example of parentheses:

/folder(one|two)/thanks

This matches two URLs, folderone/thanks and foldertwo/thanks.

OK, on with the explanation. Remember, we were talking about
things we should have learned had we been paying attention in
school.

Remember how your math teacher said that if you had an
equation, the division and multiplication got done before the
subtraction and addition? Well, since I wasn’t paying attention in
Mrs. Petrowski’s 4th-grade class, I pulled out my old notes, and
here is what I found:

2 + 3 x 5 = 17

(Right? 3 times 5 equals 15, plus 2 equals 17.)

If you wanted it to execute differently, you had to force the
equation with parentheses – like this:

(2 + 3) x 5 = 25

Above, I’ve changed the same numbers to become 2 plus 3 equals
5, times 5 equals 25. And that’s the value of parentheses in math. I
see from my very old notes that Mrs. Petrowski called it the Order
of Operations.

So what about Regular Expressions? Why would we need
parentheses there? In order to understand our need, we have to
look at other expressions (just like we had to understand the math
operations symbols in order to understand why parentheses are
needed.)

paRentHeseS

 grouping

10

()

paRentHeseS
Let’s use pipes as our example. I wrote that this expression:

confirmation|thanks

means everything on one side of it (confirmation) or everything
on the other, i.e. thanks.

But as we start to think about why we would want to use
parentheses, we can revisit that example above and ask ourselves,
“What happens when we don’t want to grab everything on either
side of the pipe?” Like this example:

/foldertwo/thanks

/folderone/thanks

A great way to represent this in RegEx would be

/folder(one|two)/thanks

So we are allowing the RegEx to match either the thanks page
in folderone or the thanks page in foldertwo – and it is the
parentheses that allow us to group so that the pipe knows what to
choose between.

This next example is a little different. Again, we’re going to roll
two URLs into one goal, but this time, we use the parentheses to
tell the question mark what is optional. This website has three
thank-you pages:

/thanks

/thankyou

/thanksalot

If we only want the /thanks and the /thanksalot pages to be
part of our goal, we could do it like this: /thanks(alot)?

This means, the target string must include /thanks, but alot is
optional. So it matches both /thanks and /thanksalot. And the
/thankyou page will never get included, because there is no s
in its URL (so it doesn’t match the beginning of this RegEx, i.e.
thanks).

pt. 2

11

I usually like to introduce just one character at a
time. But these two are a little like salt and pepper. True, you can
use just salt or just pepper, but they get served together so often
that they are a set. And so we have both square brackets [] and
dashes –

With square brackets, you can make a simple list, like this: [aiu] .
This is a list of items and includes three vowels only. Note: Unless
we use other expressions to make this more complicated, only one
of them will work at a single time.

So p[aiu]n will match pan, pin and pun. But it will not match
pain, because that would require us to use two items from the
[aiu] list, and that is not allowed in this simple example.

You can also use a dash to create a list of items, like this:

[a-z] – all lower-case letters in the English alphabet

[A-Z] – all upper-case letters in the English Alphabet

[a-zA-Z0-9] – all lower-case and upper-case letters, and digits.
(Notice they are not separated by commas.)

Dashes are one way of creating a list of items quickly, as you can
see above.

squArE BraCkeTs

daShes

 grouping

&

aDvaNCed tIp
Characters that are usually special, like $ and ?, no longer are
special inside of square brackets. The exceptions are the dash,
the caret (more on this one later) and the backslash, which still

works like all backslashes do inside the square brackets.

12

pt. 1 [-]

SquArE bRacKeTs dAsheS
Here is an example of how you might use square brackets by
themselves. Let’s say you have a product group, sneakers,
and each product name has a number appended to it in the
URL (we see this a lot with industrial products where they
don’t have zippy names). So you might have sneakers450,
sneakers101, etc.

The product manager for sneakers450 through
sneakers458 wants a special profile of visits that only
included his product pages. So you might include a filter
like the one below, which makes it easy to include all the
product names, using square brackets:

pt. 2&

13

Braces are not covered in the Google Analytics documentation, but
they are supported by GA. Braces are curly brackets, {like this}.

Braces repeat the last “piece” of information a specific number of
times. They can be used with two numbers, like this: {1,3}, or with
one number, like this: {3}. When there are two numbers in the
braces, such as {x,y}, it means, repeat the last “item” at least x times
and no more than y times. When there is only one number in the
braces, such as {z}, it means, repeat the last item exactly z times.

Here is my two-number-in-braces example:

Lots of companies want to take all visits from their IP address out of
their analytics. Many of those same companies have more than one
IP address – they often have a block of numbers. So let’s say that
their IP addresses go from 123.145.167.0 through 123.145.167.99
– how would we capture that range with braces?

Our regular expressions would be:

123\.145\.167\.[0-9]{1,2}

Notice that we actually used four different RegEx characters: We
used a backslash to turn the magic dot into an everyday dot, we used
brackets as well as dashes to define the set of allowable choices, i.e.
the last “item”, and we used braces to determine how many digits
could be in the final part of the IP address.

On the other hand, if there is only one number in the braces,
the match will only work if you have exactly the right number of
characters.

So here’s an example: Let’s say you are the area manager for
Allegheny County (where I live), and you want to see all the visits
from people who touched a page on the site that had 152XX in the
URL – that’s the Allegheny County ZIP code. You could create an
Advanced Segment using a Regular Expression with square brackets
and a brace, like this:

This means, if the visit included a trip to a page that included 152
and any other two digits (i.e. 152XX) in the url, include the visit in
this segment.

braCes

 grouping

14

{}

A dot matches any one character.

When I was new at Regular Expressions, dots were perhaps the
strangest thing for me to deal with. I couldn’t figure out what “one
character” meant. And I couldn’t understand why they mattered
much. They didn’t seem very wild, as wild cards go.

Ultimately, I learned that the list of characters included all the
characters I could find on my keyboard or any other – the alpha,
the numeric, the special characters too. A dot even matches a
whitespace. I also learned there aren’t that many uses for dots by
themselves, but they are very powerful when combined with other
RegEx characters.

Let me start with some examples of how the dot can be used alone.
Take this Regular Expression:

.ite

…. It would match site, lite, bite, kite. It would also match
%ite and #ite (because % and # are characters, too.) However, it
wouldn’t match ite. Why not? A dot matches one character, and
ite includes zero characters for the dot to match (i.e., it didn’t
match any).

So let’s go to a GA example. Let’s say your company owned a block
of IP addresses:

123.45.67.250 through 123.45.67.255

You want to create a Regular Expression that will match the entire
block, so that you can take your company data out of your Google
Analytics. Since only the last character changes, you could do it
with this expression:

123\.45\.67\.25.

This would match all the required IP addresses. Note that it would
also match 123.45.67.256 and 123.45.67.25% (because a dot
matches any one character). However, each grouping (each octet)
in the IP address only goes up to 255, and we never see percent
signs or other non-numbers in IP addresses, so you would be safe
with this.

ThE doT
 wilder cards

Have you ever noticed that you can type
index.php into a search box that is sensitive to Regular

Expressions and it works – even though you didn’t
escape the dot, the way you were supposed to – i.e.,

index\.php ? That’s because the dot matches any one
character, and one of the characters the dot matches is
… a dot. And since it is unlikely that a non-dot will get

in there, it usually works just fine.

15

.

A plus sign matches one or more of the former items, which, as
usual, we’ll assume is the previous character. (It can be more
complicated, but let’s start easy.) So the list of possible matches is
clear: the former character. And the number of matches is clear:
one or more.

Here’s an example from the world of literature: When a character
trips and falls on his face, he often says Aaargh! Or maybe it’s
Aaaargh! or just Aargh! In any case, you could use a plus sign to
match the target string, like this: aa+rgh. That will match aargh
and aaargh and aaaaaaaaargh … well, you understand. Notice,
however, that it won’t match argh. Remember, it is one or more
of the former items.

ThE plUs SIgn

 wilder cards

Does anybody really use plus
signs anymore? Sure they do
– you may find that you use
this expression rarely, but the
one time you need it, it will be
very valuable.

16

+

People really misuse stars. They have specific
meanings in other applications. They don’t mean the same thing
in RegEx as they do in some of those other applications, so be
careful here.

Stars will match zero or more of the previous items. They function
just like plus signs, except they allow you to match ZERO (or
more) of the previous items, whereas plus signs require at least
one match. For the time being, let’s just define “previous item” as
“previous character.”

Since stars are so much like plus signs, I’ll start with the same
example and point out the differences.

So once again, when a character trips and falls on his face, he
often says Aaargh! Or maybe it is Aaaargh! or (unlike last time)
just Argh! In any case, you could use a star to match the target
string, like this: aa*rgh. That will match aargh and aaargh and
aaaaaaaaargh – and the big difference from the plus sign is that
it will also match argh (i.e. no extra “a’s” added).

You’ll notice that I don’t include any screen shots for stars (or plus
signs, for that matter.) While they are both very important, they
are used very extensively with dots as the wildest cards.

ThE StAr

 wilder cards

17

*

There are two Regular Expressions
that, when put together, mean “get
everything.” They are a dot followed
by a star, like this:

/folderone/.*index\.php

In this example, our Regular
Expression will match to everything
that starts with folderone/ and
ends with index.php . This means
if you have pages in the /folderone
directory that end with .html (I see
that a lot), they won’t be a match to
the above RegEx.

Now that you have an example, you might be interested in why this
works. A dot, you may remember, means get any character. A star
means repeat the last character zero or more times.

This means that the dot could match any letter in the alphabet,
any digit, any number on your keyboard. And the star right after
it matches the ability of the dot to match any single character, and
keep on going (because it is zero or MORE) – so it ends up matching
everything.

Hard to wrap your head around this one? Trust me, it works.

 wildest card

ThE dot StAr
aDvaNCed tIp
Custom Advanced filters in Google Analytics often require you to “get
all” and make it a variable. For example, when you want to add the
hostname to the Request URL (a very common filter), do it like this:

Notice how we put parentheses around the .*, like this: (.*) – you
can see this in the boxes on the right side of the filter. To GA, in the
advanced filter section, this means get all, and put it in a variable. So
we get the entire hostname (in a variable), the entire request URL in
a variable, and then in the bottom field, we are able to specify get the
first variable in Field A, and to it, add the first variable in Field B.

18

.*

When you use a caret in your Regular Expression,
you force the Expression to match only strings that start exactly
the same way your RegEx does.

I see carets misused all the time on various Google Analytics help
groups. It goes something like this:

“I want to include only subfolder2 in my profile. My URLs look
like: http://www.mysite.com/folder1/subfolder2/index.html. I
created the include filter and the Regular Expression, which looks
like this: ^/subfolder2/index\.html. Why isn’t it working?”

The reason it doesn’t work is that Google Analytics starts reading
your URL right after the .com (or .edu, or .net, as it were). The GA
sees the above as /folder1/subfolder2/index.html. So when
the person who wrote the question above starts his RegEx with
^/subfolder2, he shoots himself in the foot. In the eyes of GA,
/folder1 comes before /subfolder2, yet the caret mandates that
/subfolder2 must be at the beginning of the target string. (And
it’s not! So it will never match.)

ThE careT
 anchors

aDvaNCed tIp
When you put a caret inside square brackets at the

very beginning, it means match only characters that
are not right after the caret. So [^0-9] means

if the target string contains a digit,
it is not a match.

19

^

A dollar sign means don’t match if the target string has any
characters beyond where I have placed the dollar sign in my
Regular Expression.

So let’s say you want to include your homepage in your funnel.
(Not such a great idea, if you ask me, but this book is about RegEx
and not best analysis practices.) Google Analytics, by default, calls
your homepage this:

/

i.e., just a slash. The problem with including just a slash in your
funnel is that it will match everything. Every single URL on your
site has a slash in it, so it automatically matches them all, since
RegEx are greedy. In order to match just your homepage, you
should follow it with a dollar-sign anchor, like so:

/$

That means the page has to end with a slash.

But wait … aren’t there pages that end with a slash that aren’t your
home page? Like so: /mysite.com/folder/

So the very best way you can be sure to get just the slash page
(homepage) is with a beginning and an ending anchor:

^/$

ThE doLLar siGn

 anchors

Use this cautiously, because you might have
query parameters that are “shut out” of the
match. For example, let’s say your affiliate
marketers append code only to the end of the
URL, so they can get credit for the sale:

http://www.mysite.com/productpage123
?affiliate=storename

In the eyes of Google Analytics, that looks like:

/?affiliate=storename

… and it doesn’t match the ^/$ RegEx in the
example on this page, because the target string
doesn’t start and end with the same slash.

20

$

When I was a newbie to RegEx, I used to see this on the RegEx Wikipedia
listing (which I pored over constantly, trying to understand what these little characters were):

((great)*grand)?((fa|mo)ther)

Like most things in life, once you understand them, they are trivial … but before you understand them, they are daunting. So I will take this apart to
make it easier to understand.

The parentheses create groups, separated by a question mark. So we effectively have:

(First Expression in the first set of parentheses)?(Second Expression in the second set of parentheses)

Since a question mark means include zero or one of the former
item, we know that the target string will be a match to this practice
RegEx whether it only matches the expression in the second set
of parentheses or it matches both the expressions in both sets of
parentheses. (Right? That’s what question marks do, allowing the
target string to match the item before them OR NOT.) So let’s start
by looking at the second half only, which we now know should be
able to stand by itself:

((fa|mo)ther)

The pipe symbol | means or. So this resolves to father or mother.

Now let’s go back and
look at the first half, the
part that came before
the question mark:

((great)*grand)

The star tells us to match zero, one or more than one
instances of the expression before it. So it can match
a string that doesn’t include great, in which case we
just have grand; and, of course, we always have the
end of the expression, which will be either mother or
father. So we are allowed to match to grandmother
or grandfather. It can match a string which includes
great just once, in which case we have great
grandmother or great grandfather. And it can
match a string which includes great more than once,
so we might end up with great great great great
grandmother or great great grandfather.

So there you have it – all your ancestors
with just one Regular Expression.

21

leTs prActicE

(noT)

ThE end
So instead of concluding, let’s get started … with a
pop quiz. I’ll blog about the answers soon after this is published.
(That way, you’ll all have a chance to say, “No, Robbin, I found
a better way to write them!”) The title of the blog post will be
RegEx eBook Answers, so you can search for it easily.

 Write a Regular Expression that matches both dialog and
dialogue

 Write a RegEx that matches two request URLs:
/secondfolder/?pid=123 and /secondfolder/?pid=567
(and cannot match other URLs)

 Write a single Regular Expression that matches all your
subdomains (and doesn’t match anything else). Make it as
short as possible, since Google Analytics sometimes limits the
number of characters you can use in a filter. Your subdomains
are subdomain1.mysite.com, subdomain2.mysite.com,
subdomain3.mysite.com, subdomain4.mysite.com,
www.mysite.com, store.mysite.com and blog.mysite.com

 Write a funnel and goal that includes three steps for the
funnel and the final goal step (four steps in all), using Regular
Expressions. Notice that there are two ways to achieve Step 2.
Here are the three pages:

➊ /store/

➋ /store/creditcard or store/moneyorder

➌ /store/shipping

➍ /store/thankyou

22

BIOSREGULAR
EXPRESSIONS
FOR GOOGLE
ANALYTICS

ABOUT BOUNTEOUS
Bounteous is a Google Analytics Certified Partner in Pittsburgh, PA. The company consults in
Traffic, Analysis and Action – that translates to SEO/PPC, Google Analytics, and User Testing/
Website Optimizer. Good contact information for Bounteous is getinfo@bounteous.com or
directly at (877) 220-5862. If you downloaded this ebook and aren’t sure where to go back to
see it online, the site address is www.bounteous.com

ABOUT ROBBIN STEIF
The author, Robbin Steif, is the former owner of LunaMetrics, now Bounteous. She drove the
team at Google Analytics a little crazy in her quest to get better GA documentation, and they
lovingly obliged by including many of her thoughts in their Regular Expressions help sections.
Steif is a frequent speaker on analytics in general and Google Analytics in particular. She has
been chair of the Web Analytics Association’s (WAA) Marketing committee, and has served
a two year WAA Board of Directors term. Steif is a graduate of Harvard College and the
Harvard Business School.

Robbin loves to hear from users, and she welcomes your questions and comments. You can
reach her like this:
SKYPE robbinsteif
TWITTER robbinsteif

… or the old-fashioned way:
PHONE (412) 381-5500

SOME THANK-YOUS
To Nick M, who stood in a Palo Alto bowling alley with me and discussed Regular Expressions
for Regular People (that was the first name for this ebook). To Steve in Australia and Justin,
who taught me RegEx. To David Meerman Scott and Jonathan Kranz – I have never met you,
but you taught me (respectively) why and how to write an ebook. A big thank you to my team
at Fireman Creative for the care and feeding of this ebook.

©2010 by Lunametrics. Copyright holder is licensing this under Creative
Commons Attribution-Noncommercial-Share Alike 3.0 license. Please feel
free to post this on your blog or email it to whomever you believe would
benefit from reading it. Thank you.

Original ebook design: Fireman Creative

